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Abstract 
Purpose – The purpose of this paper is to analyze the active suppression of the nonlinear aeroelastic vibrations of ailerons caused by freeplay by 
robust H1 and linear quadratic Gauss (LQG) methods of control in case of incomplete measurements of the state of the system. 
Design/methodology/approach – The flexible wing with nonlinear aileron with freeplay is treated as a plant-controller system with H1 and LQG 
controllers used to suppress the aeroelastic vibrations. The simulation approach was used for analyzing the impact of completeness of 
measurements on the efficiency and robustness of the controllers. 
Findings – The analysis shows that the H1 method can be effectively used for suppression of nonlinear aeroelastic vibrations of aileron, although 
its efficiency depends essentially on completeness and types of measurements. The LQG method is less effective, but it is also able to prevent aileron 
vibrations by reducing their amplitudes to acceptable, safe level. 
Research limitations/implications – Only numerical analysis was carried out for the problem described; thus, the proposed solution is of 
theoretical value at this stage of analysis, and its application to the real suppression of aeroelastic vibrations requires further research. 
Practical implications – The work presents a potentially useful solution to the problem of interest and results are a theoretical basis for further 
research. 
Social implications – This work may lead to a hot debate on the advantages and drawbacks of the active suppression of vibrations in the 
aeroelasticians community. 
Originality/value – The work raises the important questions of practical stabilizability of the nonlinear aeroelastic systems, their dependence on 
completeness and types of measurements and robustness of the controllers.  
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Introduction 

Aeroelastic vibrations of aircraft structures, especially of lifting 
surfaces and controls, are very dangerous because they can 
cause disasters of aircraft, especially in case of mode-coupled 
bending-torsion-aileron flutter (Bisplinghoff et al., 1955) or 
they are at least undesirable, such as nonlinear vibrations of 
controls, especially ailerons or elevators (Dowell, 2015). For 
over hundred years, the classic flutter was a reason of several 
disasters and malfunctions of aircraft of all types: from gliders, 
small general aviation aircraft, medium military training aircraft 
to heavy fast military aircraft. In a hundred-year history of 
aviation, a majority of aircraft, including the most famous ones, 
had greater or lesser problems with aeroelastic vibrations. 
Classical flutter of lifting surfaces and controls is very rapid; 
amplitude of vibrations grows quickly (exponentially) which 
usually causes damage of the structure of wing or controls that 
leads to disaster of aircraft. The classical flutter, however, is 

well known and thus is not so dangerous as it was in the past, 
which is confirmed by a relatively small number of disasters that 
happened in past 20 years. This is because of the reliability and 
accuracy of the methods of computing the critical velocity of 
flutter and the refined procedures of airborne flutter tests 
(Hodges and Pierce, 2011). According to the regulations, the 
critical speeds of any flutters have to exceed at least 15 per cent 
[big aeroplanes CS-25 (2016)] or 20 per cent [small and 
medium aeroplanes, CS-23 (2012)] the allowable speeds of 
aircraft. A quite different situation is in the case of other 
aeroelastic vibrations, especially vibrations of control surfaces, 
most commonly ailerons (Dowell, 2015). Such vibrations, 
caused usually by freeplay or hysteresis in aileron control 
systems, are usually nonlinear and occur at velocities much 
lower than those of critical flutter speeds and, what is even 
worse, lower than the operational speed limits (VD or VNE). 
An infamous example of such situation was a disaster of the 
F-117 stealth fighter in 1997 caused by nonlinear vibrations of 
aileron at the speed �750 km/h, much lower than the critical 
flutter speed, �1100 km/h. It thus should not be expected that 
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the critical velocities of such vibrations will be higher than those 
of operational speeds of aircraft. 

Nonlinear vibrations of controls occurred from time to time in 
the past: in the 1990s, the vibrations of elevators in some types of 
Airbus commercial aircraft were observed that resulted in 
extensive discussion between the manufacturer and government 
authority (Croft, 2001). Similarly, the aforementioned 
spectacular disaster of F-117 was caused by the nonlinear 
vibrations of aileron. Dowell (2015) stated that the occurrence of 
nonlinear flutter of limit cycle oscillations (LCO) type caused by 
freeplay in control surfaces was not documented in the public 
literature, although it was discussed in the aeroelastician 
community and was perhaps described in unpublished internal 
reports of aircraft companies and government authorities. 

There is thus a need of explaining the physical mechanisms 
of such vibrations, that result in publication of a number of 
papers devoted to these problems, e.g. Kim and Lee (1996), 
Tang et al. (1998), Frampton and Clark (2000), Liu et al. 
(2002), Liu and Dowell (2005), Tang and Dowell (2010), 
Daochun et al. (2010), Xiang et al. (2014) and Kholodar 
(2016). 

Nonlinear vibrations are most often the LCO with limited 
amplitude; thus, they need not be so destructive as divergent 
oscillations of classical flutter. There is even an opinion that the 
nonlinear vibrations of LCO type just prevents the occurrence 
of classical divergent flutter (Dowell, 2015). Nevertheless, such 
nonlinear vibrations are undesirable because they may result in 
material fatigue, upset of control systems or growing freeplays; 
thus, they should be prevented or suppressed. 

Prevention of aeroelastic vibrations may be passive (assured 
in designing process and by the exploitation procedures) or 
active, that consists in damping of vibrations on their onset 
using automatic flight control system (AFCS) that has to be 
supplied by the additional system for measuring deflections of 
flexible aircraft structure. It should be mentioned here, that the 
active suppression need not damp the vibrations entirely; it is 
often sufficient to prevent the exponential increasing their 
amplitude keeping it on safe, low level. 

The concept of the active suppression of vibrations has a 
long, over 40 years, history (Dowell, 2015). Though as early as 
in 1973, the active suppression of classical bending-torsional 
flutter of wing was successfully tested on the B-52 bomber 
aircraft (Roger et al., 1975), an increasing of the critical flutter 
speed over 18 km/h (that is, 1.6 per cent of critical flutter speed) 
was rather symbolic. Later on, active suppression of classical 
linear mode-coupling type flutter had been practically 
abandoned, however, probably because it was considered to be 
too hazardous (e.g. disaster of the X-56A unmanned aircraft 
during testing active flutter suppression system, November 19, 
2015, Warwick, 2015) and because of the fact that the 
regulations require the critical speeds of flutter phenomena be 
greater than the operational speed limits (CS-23, 2016, CS-25, 
2012). The idea of active suppression of aeroelastic vibrations 
has been refreshed in the past decade in the context of 
suppression of aeroelastic vibrations that cannot be “shifted” 
beyond the operational speed limits, such as the flutter of very 
flexible wings and nonlinear vibrations of controls. The active 
suppression of nonlinear vibrations of controls of limit cycle 
oscillation type are very attractive, because these vibrations 
occur typically at the speeds much lower than those of critical 

flutter speed, and the existing FCS systems mounted routinely 
on the aircraft for flight control purposes can be used without 
extensive modifications for suppressing of such vibrations. 

A significant progress in the area of active suppression of 
aeroelastic vibrations has been made recently, both theoretical 
and experimental (Block and Strganac, 1998; Ko et al., 1998; 
Clark et al., 2000; Frampton and Clark, 2000; Bialy et al., 2014). 

In this paper, the problem of active suppression of aeroelastic 
vibrations of aileron with freeplay in the stiffness nonlinearity is 
considered. In spite of restricted ability of measuring of the 
state of the system the robust H1 and linear quadratic Gauss 
(LQG) control method with output feedback has been 
proposed for active suppression of vibrations. The semirigid 3- 
degrees of freedom linear structural model of wing with 
nonlinear aileron coupled with aerodynamic potential model of 
incompressible flow was used for aeroelastic analysis 
(Bisplinghoff et al., 1955). It will be shown that nonlinear 
vibrations can be effectively damped by using the AFCS 
systems mounted on aircraft assuming that measurements are 
complete enough. 

The new achievements concern assessing the impact of 
incomplete measurements on efficiency and ability of active 
suppression of vibrations caused by freeplay. Although 
incomplete measurements were considered (Lee and Singh 
2007), according to best knowledge of the present author, no 
deeper analysis of this problem is presented in the literature. 

The structure of the paper is as follows. In Section 1, the 
nonlinear aeroelastic model of wing, its form used in control 
theory and its linearized version are presented. Next, the general 
concept of active suppression of vibration will be presented 
together with the methods of control linear quadratic regulator 
(LQR) and H1 used for this purpose, generalized for nonlinear 
problems (Cimen, 2012). Later on, the problem of incomplete 
measurements and their impact on robustness and efficiency of 
both methods will be described. In Section 2, the results of 
simulations of active suppression of freeplay vibrations by both 
H1 and LQG methods are presented and comparison of both 
methods in this context is given. Next, the analysis of impact of 
incomplete measurements on efficiency and robustness of H1
method used for suppression of ailerons vibration is presented. 

Aeroelastic model of wing and aileron with 
freeplay 

The classical semi-rigid model of flexible wing with aileron 
having freeplay nonlinearity and incompressible aerodynamics 
has been used for analysis of active suppression of vibrations 
(Figure 1) (Bisplinghoff et al., 1955; Tewari, 2015). It has been 
assumed that wing and aileron can perform small vibrations 
around their equilibrium positions, angles of attack of wing and 
aileron are also assumed to be small and resulting aerodynamic 
forces are linear functions of them; thus, the linear, quasi-steady 
aerodynamic model can be used (Bisplinghoff et al., 1955). The 
aeroelastic model of wing and aileron has then the form: 

MS � MA V1ð Þð Þ€q 1 DS � DA V1ð Þð Þ _q 1 KS � KA V1ð Þð Þ q 

¼ fu uð Þ (1)  

where the state vector q(t) = [h(t), u (t), b (t)]T describes 
bending h(t) and torsion u (t) of wing and aileron’s deflection 
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b (t), MS, DS and KS are, respectively, the mass, damping and 
stiffness matrices of the wing, MA(V1), DA(V1) and KA(V1) 
are, respectively, the aerodynamics mass, damping and stiffness 
matrices of the wing that depend on undisturbed velocity of 
flow V1, fu(u) = [0, 0, Mu(u)]T is the vector of external 
excitations in which Mu(u) is the control moment applied to the 
aileron that depends on control u served by the control system. 

The aileron freeplay is modeled by the nonlinear moment 
Mu(u; d ) that depends on applied control u (Figure 2) 

Mu u; dð Þ ¼
0 juj � d

cmu u � sign uð Þ dð Þ juj > d

(

(2)  

where cmu is the coefficient of the control moment and d is the 
width of the freeplay zone. This is a middle nonlinearity, 
because it can be linearized locally. 

The aeroelastic model of wing and aileron equations (1) and 
(2) can be written in the standard form of the system of 
ordinary differential equations of the first order: 

_x ¼ f x; uð Þ

¼ _q; � MS � MAð Þ
� 1 DS � DAð Þ _qð

h

1 KS � KAð Þ q � fu uð Þ Þ
iT

(3)  

where x tð Þ ¼ q tð Þ ; _q tð Þ½ �
T
2 Rn is the state vector of the 

standard model dimension of n = 6, u(t) [�Rm is the vector of 
control dimension of m = 1, whereas f(·;·): Rn � Rm ! Rn is 
the nonlinear operator of the dynamics of the aeroelastic 
system. 

Active suppression of vibrations as the control problem 
The concept of the active suppression of vibrations consists in 
using the automatic control system with feedback loop with 
controller K (Figure 3), that is used for damping of the 
aeroelastic vibrations by getting them asymptotically to the 
equilibrium x(t) ! 0. In the considered problem of damping 
the nonlinear aeroelastic vibrations of aileron, it is important to 
prevent their unbounded exponential growth and to assure 
small amplitude of the limit cycle. Thus, instead of requiring 
the full damping of vibrations, one may postulate a weaker 
requirement, consists in limiting the amplitude of vibrations to 
some small, technically acceptable level, kx(t)k �H, where H is 
the maximal acceptable amplitude of vibrations. 

The dynamical model of active suppression of vibration of 
the aeroelastic system given by equation (3) supplied by the 
observation model and control model can be written in the 
general nonlinear form used in control theory (Cimen, 2012) 
(Figure 4): 

_x ¼ f x; u; Dð Þ1 wx (4)   

y ¼ c x; Dð Þ1 wy (5)   

u ¼ k yð Þ (6)  

where y [�Rp, p � n, is the output (measurements) vector, c(·): 
Rn ! Rp is the nonlinear output operator, k(·): Rn ! Rm is the 
nonlinear operator of feedback control (controller), wx(t) [�R

n i 
wy(t) [�R

p are the exogenous external disturbances of model 
dynamics and measurements (which are not considered in this 
work), whereas the vector D stands for internal disturbances 
that describe unknown properties (“lack of knowledge”) of the 
physical system. 

The optimal control methods are defined basically for linear 
systems, but they can be extended to wide class of nonlinear 
systems as well (Cimen, 2012). In this approach, the nonlinear 
model in equations (4) to (6) is linearized in the vicinity of the 
actual state of the model: 

Figure 2 Model of aileron freeplay 

Figure 3 Model of active suppression of wing-aileron vibrations 

Figure 1 Semi-rigid model of flexible wing and aileron with freeplay 
nonlinearity 

Figure 4 Control theory representation of active suppression model 
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_x ¼ A x; Dð Þx 1 B x; Dð Þ u 1 wx (7)   

y ¼ C x; Dð Þ x 1 wy (8)   

u ¼ � K xð Þ y (9)  

where the matrices of dynamics A [�Rn�n, control B [�Rn�m, 
measurements C [�Rp�n and the gain matrix (controller) K [�
Rm�n are the following Jacobians of the nonlinear operators f, c 
and k: 

A xð Þ ¼
@f x; uð Þ

@x
; B xð Þ ¼

@f x; uð Þ

@u
;

C xð Þ ¼
@c xð Þ
@x

; K xð Þ ¼ �
@k yð Þ
@y

(10)  

The linearized model in equations (7) to (9) will be used for 
active suppression of aeroelastic vibrations of aileron. 

The controller K may be the classical regulator or it can be 
designed based on the optimal or robust control theory (Zhou 
and Doyle, 1999; Lewis et al., 2012; Lavretsky and Wise, 2013; 
Skogestad and Postlewhite, 2005). Optimal controller should 
assure the minimization of the error vector z(t) [�Rr defined by 
the regulated error equation: 

z ¼ C1 x 1 D12 u (11)  

where C1 [�R
r�n, D12 [�R

r�n are the state and control errors 
matrices. It can be attained by minimization either of the H1
norm: 

kG sð Þ k1 : ¼ max
kw tð Þk2¼1

k z tð Þ k2 ¼ max
w tð Þ6¼0

k z tð Þ k2

kw tð Þ k2
(12)  

or the performance index: 

J ¼ k zT z k2
2

¼ k xTCT
1 C1 x 1 2xT CT

1 D12 u 1 uT DT
12D12 u

� �
k

2
2

(13)  

A special case of equation (13) is the performance index used in 
the LQR and LQG optimal control methods that uses the state 
and control errors: 

J x; uð Þ ¼

ð1

0

xTQx 1 uTRu
� �

dt (14)  

where Q ¼ CT
1 C1 2 Rn�n and R ¼ DT

12D12 2 Rm�m are some 
appropriate weighting matrices. Controllers K that minimize 
the performance criteria in equations (12) to (14) have the 
general form: 

K ¼ R� 1 BT P (15)  

where P [�Rn�n, P = PT > 0 is the matrix being the solution of 
the stationary Riccati equation: 

0 ¼ AT P 1 P A � P B R� 1 BT P 1 Q (16)  

Problem of incomplete state measurements 
The basic method of optimal control is the LQR method. Its 
advantages are high efficiency, high phase and gain margins 
that guarantee its good robustness. The main disadvantage 
of the LQR method is the necessity of measuring of the full 
state vector, y = x, which is difficult in practice. In the 
considered case of active suppression of vibrations, only 
the aileron’s deflection and its rate measurements are easily 
available because they are measured for the AFCS system 
of aircraft control. Measurements of the deflections of the 
aircraft structure is difficult because it requires installation 
an additional measuring equipment on aircraft, that can 
use accelerometers, laser or cameras (Tewari, 2015) which 
is cumbersome in practice. Restricted ability of measuring 
of the full state vector precludes, in principle, the use of the 
LQR method for active suppression of vibrations. The 
solution to this problem is to use other method of optimal 
control, such as the LQG or H1 method, that allows 
incomplete measurements, in which the number of 
measured variables may be smaller than the dimension of 
the state vector: 

p ¼ dim yð Þ � n (17)  

In such a case, the controllers K of both methods, LQG and 
H1, have to use some estimation vector x̂ tð Þ 2 Rn of the state 
vector x(t): 

u ¼ � K x̂ (18)  

Estimation vector x̂ is the solution of linear observer equation 
(e.g. the Kalman filter) having the form (Zhou and Doyle, 
1999; Lewis et al., 2012; Lavretsky and Wise, 2013; Skogestad 
and Postlewhite, 2005): 

_̂x ¼ A x̂ 1 B u 1 L C x̂ � yð Þ (19)  

where L [�Rn�p is the measurements injection matrix. 
In the present work, it will be shown that not only the 

number of measurements p but also their types (deflections or 
velocities) have an essential influence on efficiency of 
suppression of aileron vibrations. This concerns both LQG and 
H1methods. 

Evaluation of robustness 
The H1method serves in addition an opportunity to evaluate the 
impact of various factors on the robustness of the suppression of 
vibrations. In particular, the influence of incomplete 
measurements may be assessed this way. 

The robustness of the H1 method can be evaluated based on 
the concept of internal disturbances D introduced in the model 
equations (8) to (10) by the so called coprime factorization of the 
transmittance of the system (Zhou and Doyle, 1999; Skogestad 
and Postlewhite, 2005). The state space representation of the 
transmittance of the aeroelastic model: 
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GD ¼
A Dð Þ B Dð Þ

C Dð Þ 0

" #

(20)  

can be factored in the form of (left) coprime factorization: 

GD ¼ M 1 DMð Þ
� 1 N 1 DNð Þ (21)  

where M and N are factors of the transmittance GD for D = 0, 
and DM, DN are the transmittances of disturbances D. 

If these factored disturbances are bounded in the H1 norm 
by «max > 0: 

k DM DN½ �k1 < «max (22)  

and if the controller K1 is stable and fulfils the condition: 

k
K1
I

� �

I 1 GK1ð Þ
� 1M� 1 k1 �

1
«max

(23)  

then this controller K1 will be robust and the robustness 
margin «max is equal to: 

«max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � k N M½ � k
2
H

q

(24)  

As the coprime factors N and M depend on the matrices A, B 
and C of the physical model (Skogestad and Postlewhite, 
2005), the robustness margin «max enables one to evaluate the 
robustness of the K1 controller for the given system. In 
particular, one is able to check quantitatively the influence of 
incompleteness of measurements, defined by the measurement 
matrix C of the model, on the robustness of the K1 controller 
and thus its ability to suppress the aeroelastic vibration for 
different number and types of measurements. There is no such 
option for LQG method. 

Description of LQG and H‘ methods 
The general form of the controller u = Ky has the form (Zhou 
and Doyle, 1999; Skogestad and Postlewhite, 2005): 

_̂x
u

" #

¼ K
x̂
y

� �

(25)  

where x̂ tð Þ is (hidden) estimate of the state x(t) and K is the 
generalized controller. Specific controllers for LQG and H1
methods are defined as follows. 

LQG controller 
Controller of the LQG method has the form: 

KLQG ¼
A � BR� 1BT X � YCT V � 1C YCTV � 1

� R� 1BTX 0

" #

(26)  

where matrices X and Y are solutions of the Riccati equations: 

AT X 1 XA � XBR� 1BT X 1 Q ¼ 0 (27)   

YAT 1 AY � YCTV � 1CY 1 W ¼ 0 (28)  

Matrices V and W are either the power spectral density matrices 
for disturbances of model dynamics and measurements or 
simply they are design matrices that have to be tuned 
(Skogestad and Postlewhite, 2005). The observer equation has 
the form: 

_̂x tð Þ ¼ Ax̂ 1 Bu 1 YCT V � 1 Cx̂ � yð Þ (29)  

H‘ controller 
The H‘ method is suboptimal, the parameter of suboptimality 
g has to fulfill the condition: 

g > gmin ¼ 1=«max (30)  

where gmin is the (minimal) optimal value that depends on the 
specific problem via «max defined by equation (24). 

Controller of the H‘ method has the form (Skogestad and 
Postlewhite, 2005): 

K1 gð Þ ¼
A � BBTX 1 g 2 1 � g 2

� �
I 1 XZ

� �� T
ZCTC g2 1 � g2

� �
I 1 XZ

� �� T
ZCT

BTX 0

" #

(31)  

where matrices X and Z are solutions of the Riccati equations: 

ATX 1 XA � XBBT X 1 CT C ¼ 0 (32)   

ZAT 1 AZ � ZCT CZ 1 BBT ¼ 0 (33)  

The optimal parameter gmin is given by: 

gmin ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 1 r XZð Þ

q

(34)  

where r(A) denotes the spectral radius of the matrix A. The 
observer equation has the form: 

_̂x tð Þ ¼ Ax̂ 1 Bu 1 Z 1 � g2
� �

I 1 XZ
� �

Cx̂ � yð Þ (35)  

In the limit g !1 the H‘ method tends to the LQG method 
(Zhou and Doyle, 1999), which might suggest that the H‘ 

method is generally better than LQG method. It is, however, by 
no means obvious for linearized problems. 

The controllers of the LQG and H1methods defined by the 
equations (26) to (35) will be used for active suppression of 
aeroelastic vibrations of aileron. 

Simulation analysis of active suppression of 
aileron vibrations 

The developed model of active suppression of nonlinear 
aeroelastic vibration of aileron with freeplay has been used for 
analysis the impact of incomplete measurements on the 
efficiency and robustness of the compared methods H1 and 
LQG. The simulation (time-marching) approach was used 
for numerical analysis because of the nonlinearity of the 
model. 

The analysis concerns: 
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� checking the efficiency of active suppression of aileron 
vibrations;  

� comparison of both methods H1 and LQG; and  
� checking the impact of incomplete measurements on 

efficiency and robustness of active suppression. 

The analysis was carried out for the following cases:  
� full state measurements, h(t), u (t), b (t), _h tð Þ ; _θ tð Þ ; _β tð Þ ny 

= 6;  
� measuring of three velocities, _h tð Þ ; _θ tð Þ ; _β tð Þ, ny = 3;  
� measuring of three deflections, h(t), u (t), b (t), ny = 3;  
� measuring of individual variable: h(t) and b (t), ny = 1;  
� measuring the rate of aileron deflection only _β tð Þ, ny = 1;  
� measuring of deflection and rate of aileron, b (t), _β tð Þ, ny = 

2; and  
� the best minimal combination of measurements: torsional 

angular velocity _θ tð Þ and rate of aileron _β tð Þ, ny = 2. 

Comparison of H1 and LQG methods was done for all these 
cases. 

The following plots will show time histories (in seconds) of 
aileron’s deflection b (t) (deg), wing torsion angle u (t) (deg) 
and wing bending h(t) (m). Only the deflections h(t), u (t) and 
b (t) are shown, velocities _h tð Þ ; _θ tð Þ ; _β tð Þ behave similarly, so 
the plots will be omitted for savings. 

The model data are (Figure 1) wing area S = 10.3 m2, wing 
semichord b = 0.345 m, aerodynamic center position a = � 0.50, 
elastic axis position e = � 0.25, aileron’s leading edge position 
c = 0.652, wing mass m = 71 kg, wing moment of inertia Iu = 
27.0 kgm2, aileron moment of inertia Ib = 0.88 kgm2, bending 
natural frequency fh = 5.1 Hz, torsional natural frequency fu = 
7.7 Hz, aileron natural frequency fb = 10.0 Hz, aileron 
deflection limit b max = 30°, aileron freeplay d = 0.2 (20 per cent 
b max), aileron control moment coefficient cmu = 200 Nm and lift 
curve slope dcL/da = 5.54. 

Level flight with velocity V1 = 72.0 m/s at altitude H = 2,000 
m was assumed for which the air density is r = 1.0065 kg/m3. 

Classical bending-torsional-aileron flutter 
For verification of the reliability of the basic aeroelastic model, 
the classical bending-torsional-aileron flutter has been 
simulated first. There is no freeplay in aileron and the active 
suppression is switched off. One obtains typical exponentially 
divergent vibrations (Figure 5). 

The critical flutter speed Vkr = 65.9 m/s is of 10 per cent 
lower than that of bending-torsional flutter, Vkr = 71.6 m/s, 
which is consistent with the classical model of flutter 
(Bisplinghoff et al., 1955). The model seems thus to be reliable 
and appropriate for testing the active suppression of nonlinear 
aileron vibrations (Figure 6). 

Full state measurements, ny = nx = 6 
The H1 method suppress vibrations very efficiently, which 
arises from high robustness margin, «max = 0.44 (according to 
Skogestad and Postlewhite (2005); a good robustness margin is 
considered to be «max = 0.25); the LQG method is not able to 
suppress the vibrations; LCO of significant amplitudes occur, 
although there is no catastrophic growth of vibrations, and 
bending-torsion-aileron flutter is prevented. 

Incomplete measurements, velocities, ny = 3 
There is no decreasing of efficiency of both H1 and LQG 
method in comparing with full measurements case. For H1
method, it is confirmed by robustness margin «max = 0.42 that 
is still very good. The LQG method behaves similarly to the full 
measurements case, it is still able to prevent bending-torsion- 
aileron flutter (Figure 7). 

Incomplete measurements, deflections, ny = 3 
Very surprisingly, neither H1 nor LQG methods are able to 
suppress vibrations, despite that robustness margin «max = 
0.291 is still very good. There is essential decreasing in 
efficiency of H1 method in comparing with the same number 
of velocities measured. Vibrations grow quickly and after 0.4 s 
the aileron deflection attains the limiting value 30°. The LQG 
method is much more robust in this case, although it is neither 
able to suppress vibrations or stabilize them in a safe limit cycle 
(Figure 8). 

Failures in suppressing vibrations both of LQG and H1
methods with displacement-type measurements was quite 
surprising, because stable LCO was expected, as in the case of 
velocity measurements, described above. This means that not 
only the number but also the type of measurements plays a 
crucial role in robustness of the controllers. It is also visible, 
that the robustness margin defined in H1 method is not 
necessarily an adequate measure of its effectiveness, at least in 
the context of active suppression of vibrations. 

Incomplete measurements, deflection of wing, ny = 1 
Neither H1 nor LQG methods are able to suppress 
vibrations entirely, limit cycles appears, but both methods 
prevent bending-torsion-aileron flutter. The LQG method 
is more efficient in this case. The robustness margin «max = 
0.016 is very small and this might explain worse 
effectiveness of H1 method comparing with the LQG 
method in this case (Figure 9). 

Incomplete measurements, deflection of aileron, ny = 1 
Despite that only one variable is measured here, there is close 
similarity to the third case with measurements of all three 
deflections b (t), h(t), u (t). Neither H1 nor LQG methods 
are able to suppress vibrations, which is now reflected in the 

Figure 5 Classical bending-torsional-aileron flutter. Supercritical aileron’s vibrations b (t) 
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robustness margin «max = 0. 0394 that is much lower than in 
the aforementioned third case. It is then obvious that not the 
number but the type of measured variable is crucial for 
efficiency and robustness of the active suppression of 
vibrations (Figure 10). 

Incomplete measurements, rate of aileron deflection, ny = 1 
This is the most interesting case, as aileron’s deflection rate _β tð Þ
is easily available measurement (Figure 11). 

Results are somewhat unexpected, as despite the fact that 
only one variable is measured, the suppression of vibrations is 

Figure 6 Vibrations of h(t), u (t) and b (t) 

Figure 7 Vibrations of b (t) 

Figure 8 Vibrations of b (t) 
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Figure 9 Vibrations of h(t) 

Figure 10 Vibrations of b (t) 

Figure 11 Vibrations of h(t), u (t), b (t) 
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quite satisfactory. Although neither H1 nor LQG methods are 
able to suppress vibrations entirely, the limit cycles appear and 
bending-torsion-aileron flutter is prevented. The H1method is 
much more efficient than LQG method in this case, which 
is reflected in quite good robustness margin, «max = 0.1775, It 
is somewhat surprising that, despite the rate of aileron’s 
deflection is measured, the vibrations of aileron are quite large, 
whereas suppression of bending and torsional vibrations of 
wing is much more effective. 

Incomplete measurements, deflection and rate of aileron, ny = 2 
Unfortunately, adding measurements of aileron’s deflection 
b (t) to the measurements of its rate _β tð Þ does not improve the 
suppression of vibrations comparing to measurement of rate 
_β tð Þ alone. The results are almost the same, which is 
confirmed by the same robustness margin, «max = 0.1775 
(Figure 12). 

The best minimal combination of measurements: torsional angular 
velocity _θ tð Þ and rate of aileron _β tð Þ, ny = 2 
The conclusion that can be drawn from all the cases analyzed 
previously is that the best result that can be obtained by the 
H1 method in active suppression of aileron vibrations in the 
sense of full suppression of them with the use of a minimal set 
of measured variables can be attained by one of two 
combinations of measurements: _β tð Þ with either _θ tð Þ or _h tð Þ
(Figures 13 and 14). 

Similar to the case of full measurements, the H1 method 
suppress vibrations very effectively, which is confirmed by good 
robustness margins, «max = 0.26 and «max = 0.3049, 
respectively, that are comparable to that of full measurements 
(«max = 0.44). The LQG method is not able to suppress the 
vibrations, LCO of significant amplitudes occur; moreover, the 
amplitudes of aileron deflections are high and because of 
freeplay, less regular than those of bending and torsion 
vibrations of wing. 

It is visible that the best minimal combination of 
measurements is that of _β tð Þ and _θ tð Þ. Measuring of _h tð Þ
provides worse results, although not by much. 

Finally, it is important to state that the dependence of the 
efficiency of active suppression of aeroelastic vibrations upon 
the types of measurements is not affected by the features of 
both LQG and H1 methods. In particular, it does not depend 
on the weighting matrices Q and R of the LQG method. 

Conclusion 

The simulation numerical analysis of the active suppression of 
the aeroelastic vibrations of nonlinear aeroelastic system of 
flexible wing with freeplay nonlinearity in aileron has shown 
that such nonlinear vibrations can be suppressed by H1 robust 
method of control quite effectively. The H1 method is able to 
damp the vibrations much quicker than the LQG method in 
most cases, but the ability of both methods to suppress the 
vibrations depends essentially on the completeness of 
measurements of the state variables: when they are complete 
(full state is available) the H1 method is very effective because 
of high level of robustness achieved in this case. Moreover, it 
has been also shown that incomplete measurements may also 
be sufficient for effective damping of vibrations; however, the 
efficiency of suppression depends not only on the number but 
also on the type of measurements (displacements or velocities). 
In the extreme case of measuring, only one state component, 
the robustness of the method, is not sufficient to damp the 
vibrations at all. However, the use of both H1 and LQG 
methods enables one to prevent the occurrence of flutter by 
reducing the amplitudes of the limit cycles of such vibrations to 
acceptable, safe level, that in practice may give the pilot enough 
time to perform rescue action. It also turned out that the full 
measurements are not necessary for effective suppression of 
vibrations. Even the minimal combination of measurements 
consists of torsion rate and aileron’s deflection rate provides 
suppression that is almost as effective as that obtained with full 
measurements. 

The use of the robustness margin defined in H1method as 
a measure of efficiency of active suppression has been 
confirmed only partially. In most cases, it provided good 
qualitative information on the efficiency of the suppression, 
but there were cases when the margins were low or high and 
the suppressions were, adversely, high or low. This means 
that the robustness margin is not entirely adequate measure 
of effectiveness of active suppression of vibrations, and that 
the other factors are important, which requires further 
research. 

To summarize, the ability of both H1 and LQG methods to 
suppress the vibrations of mildly nonlinear aeroelastic systems, 
such as the aileron with freeplay, has been confirmed in the 
present work. The still open question is whether they will be 
efficient in suppression of vibrations of aeroelastic systems with 
hard nonlinearities, such as of hysteresis type. 

Figure 12 Vibrations of b (t) 
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Further work 

Further works may concern on answering the question why the 
measurements of velocities are better than those of deflections 
for active suppression of vibrations. Also, the problem of 
adequate measure of efficiency of the H1method is open. The 
other area of investigation can be the active suppression of 
vibrations of highly nonlinear aeroelastic systems, such as those 
with hysteresis nonlinearities. 
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